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Abstract 

The equation for the evolution of the density distribution and its two phase-space 
point correlation for nonlinear oscillators under the inflence of an external random driv- 
ing force are derived. The normal Fokker-Planck description is shown to be applicable 
to the average distribution. Small-amplitude and short-wavelength spatial fluctuations 
of density (“microstructure”) are found to be the special effect of the random-driving, 
distinguishing it from incoherent noise. These density fluctuations are analyzed using 
the correlation function formalism. 

1 Introduction 

The influence of random forces on nonlinear oscillators is a common problem in the random 
processes theory, with many applications in all fields of science. For an individual particle 
experiencing a randomly applied force, the resulting particle motion has the characteristics 
of the Brownian motion (see, e.g. /l/). A ssuming that the probability function of finding 
a particle in the phase space is independent of the initial phase space coordinates (Marko- 
vian process), the evolution equation of the particle distribution function is reduced to the 
Fokker-Planck equation. A similar but not identical problem is the effect of rf noise in high 
energy particle accelerators, where the dynamics of the particle distribution is equivalent to 
that of a nonlinear oscillator driven by the random statistically independent force, which is 

the same for all particles. Thus, one confronts a somewhat unusual problem of a random 
coherent driving force. It can be shown, however, that the average (over the ensemble of 
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driving forces) distribution function satisfies the Fokker-Planck evolution equation which 
appears when each particle is affected independently (incoherent noise). Many extensive 
studies have been published (see /2-4/), h w ere the Fokker-Planck equation was analyzed 
and solved using the averaging techiques in the small noise/fast oscillation regime. Due to 
the nonlinearity of the Hamiltonian system, the diffusion coefficients can be expressed in 
terms of the noise power spectrum at multiples of the oscillation frequency. The theory 
has been verified by numerical simulations /4/ and has also been cofirmed by experimental 
observations /5/. Indeed, for a small amplitude driving force, the response of the nonlinear 
oscillator concentrates mainly around the harmonics of this force at the frequency of these 
oscillations. The important point is that the amplitudes at different harmonic frequencies 
of the same, sufficiently long section of random signal, are statistically independent. Thus, 
to the zeroth order approximation, the coherently random driving force and the Brownian 
motion with statistically independent random forces produce the same results. 

Beyond the zeroth order approximation, how do the individual density distributions 
differ from the average one? Will the density fluctuations be smoothed out by the random 
noise? What is the effect of the nonlinearity on fluctuations? In the present paper, we 
address these questions by studying the fluctuations in the ensemble of density distributions, 
which can be described by the correlation function in both phase space and time. We study 
the spatial spectrum of the fluctuations (same-time correlation function) in the limit of 
small noise/ large nonlinearity. 

The plan of the paper is as follows. A model of a nonlinear oscillator with coherent 
driving force is introduced. After defining the correlation function, we obtain the self- 
contained description of fluctuations by deriving the evolution equation for the correlator. 
A solution of this evolution equation in the limit of small noise/fast oscillations is discussed 
in section 4. The conclusion is given in section 5. 

2 Model. 

We consider the general form of the Hamiltonian of nonlinear oscillator with a random 
driving force, 

H = ; f 9(q) + h(q)<(t) (1) 

where g(q) is an arbitrary nonlinear potential and t(t) is for simplicity, yet without loss of 
generality, chosen to be the white noise, i.e. 

(t(t)F(t’)) = J(t - 0 

In the absence of particle interactions (or collisions), the evolution of the density distribution 
is governed by the Vlasov equation: 

af 
( 

ag ah -- _ 
at aq + +t)) g t pg = 0. 
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The statistical properties of the fluctuating quantity f are appropriately defined by the 
ensemble average of the distribution function, 

f(P, qv t) = (f(P, q, Q{() (4) 

and the correlation function of the density fluctuations in adjacent phase space points, 

K(P, q,h & 4 = ((f (P> Q3 4 - f(P, 4, q)(f(w e7 t) - f(13, @, q&j . (5) 

We limit ourselves by considering only the same-time carrelator K and study therefore only 
the spatial, but not the time, correlation properties of the fluctuations. 

Hereafter, we use the action-angle variables J, q of the unperturbed (h(q) = 0) Hamil- 
tonian (l), which will be assumed to be known, to analyze these evolution equations. The 
perturbed Hamiltonian R in these variables has the form: 

H = f&(J) t V(J, q')f(t) (6) 

where V(J, XJ) = h(q(J, 9)) and Ho(J) are known functions. 

3 Evolution equations. 

Both the average density f and the carrel&or K are evolving in time. We will derive the 
evolution equations for both quantities using basically the conventional techniques of the 
theory of stochastic differential equations /l/. It had b een shown previously /2-4/ that 
the evolution of the average density obeys the Fokker-Planck equation. However, to the 
authors’ knowledge, the evolution of the density fluctuations has never been studied. 

In the action-angle variables, the average density and the carrel&or are given by: f = 
f(J, q, t) and K = K(J, ‘X’, j, @,1). We will also use the notation * = *+p and compressed 
notations for the phase space coordinates : (1) = Iii = (J, q) and (2) = 52; = (j, %). 
Taking the differentially small time increment At, one obtains the derivatives of the average 
densitv. 

am) lim Af(l) -= - 
at at-0 At ’ (7) 

and the carrelator, 

arc 
- = dj&((Af(l)f(2)) + (f(l)AfP)) + (Af(l)Af(W at 

- f(l)@fP)) - f(WAf(l)) - @f(l))(AfP))), 
(8) 

where the increment of the density Af = f(t t At) - f(t) can be expressed, due to the 
conservation of the phase-space density, as 

af i azf 
Af = taxi f ~~hb, (9) 
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where a summation over repeating indices is assumed. The increments of the phase-space 
variables Azi in time At can be obtained from the stochastic equations of motion. The 
second order terms in AZ were kept because of the properties of the white noise, where the 
average of quadratic terms AziAZj produces terms linear in At. 

Substituting equation (9) into equation (8) and making ensemble averages, one finds 
that the averages of products of x’s and f’s are factorizable, i.e. 

(Af(l)) = (Axi) (2) t i(AzliAzlk) ( a@:ji!,) , 

@f(lPfW = (Awhi) (Fz), (11) 

(10) 

etc. This is due to the fact that the increments Azi depend on the noise t(t) only in the 
time range between t and t+At. One obtains then the evolution equations for the moments 
of the density in the form: 

af at= 
aK 

dt= 

af 1 (Azli)- a2f 
azli + Z(AzliAxlk)azliazll. 

aK (Azli)- ari I 
as,; + (Azz~)G + s(A”liAzlk) 

a*h’ 

a%aZlk 

t k(Az2iAz2k) 
aZK 

asziazzk + (AzliAz2k) 
a?(i) af(2) a2K 
-- 

hi az2k ’ arliazzk 

(12) 

(13) 

The moments of AZ’S that are present in equations (12) and (13) can be computed 
quite straightforwardly by using the conventional techniques from the theory of stochastic 
differential equations. The details of this calculation are given in the Appendix. The 
evolution equation for the average f after the substitution of the moments (A4) becomes 
the conventional Fokker-Planck equation: 

af 
at= 

where V = V(J, q). For the carrel&or K, one obtains an evolution equation that is coupled 
to the mean f: 

&K 1 
at= [( 2 aJa* aJ 

i”v~-~~)+u(J)]~-~(~~-~~)~ 

2 a2K avav azh- ----~ 
aJ2 asf aJ a*aJ 
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avai, a2K avaV a2K avaP a2K 

%EZaJaj a~aj*--y7 

avaV a=K ---- 
aJa*a*aJ 'aJZa*a5r 

avaCaaf(l)af(;?) I avafaf(l)af(2) 
-- 

aqaau! aJ aJ 
- __- 

a@aJ aJ T 

avaPaf(i)af(z) avatiaaf(l)af(;?) 
--7- -- 

aJa* aq aJ w+aJZ ay a@ 

where v = V(j, G). 

4 Small noise / fast oscillation regime. 

4.1 Averaged evolution equations. 

On a long time scale, and in the small noise / fast oscillations regime, one can average the 
dependence of all quantities along the unperturbed trajectories J = const, Xr = w(J)t. This 
approximation is well known under the name of “averaging of fast-oscillating variables” in 
the theory of Fokker-Planck equations (see, e.g. /l/), and was also used in previous studies 
of the average density diffusion /2-4/. For the Fokker-Planck equation (14), the procedure 
is technically very simple. One assumes that the density f is independent of ~ by taking 
both the averages overt and rk (with the double average notation ((...))) for all coefficients. 
The resulting averaged Fokker-Planck equation becomes the well known diffusion equation 
12-41, 

where the diffusion intensity DJ is given by (see Appendix for details), 

o.i(J) = ;((@& = ; C741/,,~, 
n 

(16) 

where V, are the harmonic amplitudes in the Fourier expansion of V in the 2s periodic 
variable Q 

The implementation of the same small noise and fast oscillations approximation in the 
evolution equation (15) for the correlator is somewhat more subtle. We will postulate at 
this point (and confirm it by the final results) that the correlator K does not depend on the 
phase @ but retains the dependence on the phase difference ‘p = XJ - 4. The procedure for 
the evolution equation derivatition then parallels that for the Fokker-Planck equation: one 
adds an extra averaging in ‘Jr in all moments in equation (13) while retaining a dependence 
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on ‘p, and assumes K to depend on the phases S’ and Y only through the combination 
9 = ‘4’ - @. Using the moments calculated in the Appendix in the formulas (A6) and (A7), 
one obtains thus: 

$f = (w(J) -w(j)) g t ; (D&) t $ (I+) 

t (&u(J) t D*(j)) g$ t FJ(J,j,(o) (Fy t “‘) 
aJaJ 

where the functions Da, FJ, Fw appear from the moments in (A6), (A7): 

av, 2 
Dp = ;c- 

I I n aJ 
FJ(J, j, q) = c n2v,(J)k,,(sf)einv 

n 
(19) 

4.2 Asymptotic solution for the correlator. 

In the absence of noise, the solution of equation (18) for the correlator is trivial as only the 
first term in the r.h.s. survives. The correlation “decays” or rather decoheres due to the 
phase-mixing. The general solution is an arbitrary function of ‘p + (w(J) - w(j)),. The 
time scale of decoherence is T N l/X O, where X = $ and o is the r.m.s. value of J for the 
distribution f. In the presence of small noise, when the diffusion coefficient is DJ N IVl*, 

the characterictic diffusion time is rd N 6. In the limit of small noise, we expect that 
the decoherence time is much shorter than the diffusion time. Furthermore, the correlation 
“injection”, that is provided by the inhomogeneous term in equation (18), varies only on the 
slow time scale of diffusion. As a result, a quasistationary equilibrium correlation density 
will be established that is a balance between the slowly changing “injection” of correlations 
and their fast decay. 

To analyze the quasistationary solution, we drop the time derivative of K in equation 
(18). Another simplification comes from noticing that the correlator IC is the largest at a 
small spatial scale q = J - j, where the “decoherence” term (first term in the r.h.s. of 
equation (18)) is small. Expanding all the coefficients in the equation (18) to the leading 
order in Q and keeping only the dominant derivatives in q yields: 

aK a2K 
XqG t D.raqz t F I@+’ = 0 
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where the quantities X = w, DJ = DJ(J) and R, = n*~V,(J)~2 (w)* depend on J as 
a parameter. For the nonzero harmonics of K in ‘p one obtains: 

inhK, t DJ$ + R, = 0, 

where the solution of this equation is given by the Airy functions [6]. For the power spectrum 
of the fluctuations l?n = &J?“, dq K,,(q) eilie the resulting equation is of the first order: 

nXa& -- 
ak 

D.rk’lfn t R&(k) = 0 

and allows an explicit solution: 

(ak”), if nkA < 0, 

otherwise. (23) 

This is the central result of our analysis. The “correlation radius “ of fluctuations qc (the 

inverse characteristic wavelength) is seen from this formula to be qc - (&y3. 
A special feature of the spectrum of Eq. (23) is its discontinuity. It is easy to see that 

this discontinuity is the manifestation of the long N l//q] “tail” of the correlator K. Indeed, 
for large 141 B qe the second term in Eq. (21) b ecomes much smaller than the first, and 
one obtains l/lq[ tail. It is possible to obtain a more general expression for the “tail” of K 
for IqI > qc that is not limited by the condition Iqj < J by keeping the same terms of the 
primary evolution Eq. (18) (i.e. the first term in the r.h.s. and the inhomogeneous term) 
without expanding in q. The resulting expression for the “tail” is: 

K,,(J, j, t) = 
iv,(~)v;(j) af(J,t) f(J, t) 

+(J) -w(j)) aJ aj 

The most important quantity characterizing the fluctuations is their intensity, which is 
the value of the correlator K at q = 0, and can be calculated by integrating the spectrum 
i?,,. The resulting intensities P, = Kn(0) are: 

h(J) PdJ) = r$) (~X( J)) 
2/3@(J) 

(25) 

Thus, the fluctuation intensities are of the order P, N (DJ/X)“~ and will be small for small 
noise /large nonlinearity. 

5 Conclusions. 

We presented the evolution equation formalism for the same-time correlation function of 
the density distribution fluctuations in the phase space of a nonlinear oscillator under the 
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influnce of coherent (same for all particles) random driving. For the weak noise/ large 
nonlinearity of oscillations the fluctuations are small and short-ranged in the energy of 
oscillations. The fluctuations present themselves as a small “microstructure” on top of a 
smooth mean distribution function. The mechanism for the loss of correlations is related to 
the phase-mixing (“decoherence”) of density perturbations due to the amplitude-dependent 
frequency of oscillations. This is not a truly dissipative mechanism, resulting in correlations 
that indicate a long “memory” of the system as demonstrated by a long N l/q tail for the 
correlator in the energy difference q. 
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APPENDIX A 

In this Appendix, we calculate the moments of AZ’S that enter the evolution equations (12) 
and (13) by employing the conventional methods of stochastic differential equations /l/. 
We start with using the Hamiltonian equations of motion for the Hamiltonian (6) to present 
the increments AJ and AP in the form: 

A’# = w(J)AttArk‘,+Aq, 

AJ = AJ, t AJ, (AlI 

where AJ,, A@, are the first-order terms: 

t+At AJ dt’ [(t’) 

av 

J 

t+At 

A% = aJ t dt’ [(t’) (A’4 
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and AJz, A82 are the second-order ones: 

&g - gg) l*+A* dt’ lt’dt’ dt” ((t’)((t”) (A3) 

Averaging over the 6-correlated random process C yields then the following expressions for 
the same-point moments of AZ’S (no mixing of 1 and 2 variables) : 

(AJ) = (AJz) = -$ gs - a;;J;; -- 
) 

(A’Z’) = w(J)At+ (A*-,) = w(J)At + $ gg - gg 

((a~)*) = (AJ*) = At 1 (A4) 

((A’#)2) = (A’&‘:) = At 

(AJA’P) = (AJ,A’P,) = -At%: 

and for the different-point moments: 

(AJAj) = (AJlA&) = Atg$ 

avaC 
(AJAS’) = (AJ,AQ,) = -AtzC 

(A’PAj) = (A,,A$) = -A$$ 

avaP 
(AqAu-) = (AQ,Aql) = AtzE 

(A51 

In the latter expressions, we used the notations V = V(J, q) and v = V(j, G). 
In the small noise/ fast oscillations approximation, the moments have to be averaged 

over the phase ‘Z’ while keeping the dependence on the phase difference ‘p = @ - %. Using 
the Fourier series V( J, q) = C,, Vn( J)@‘, one obtains: 

((AJ)) = ;Atxn’F 

((A’I’)) = w(J)a”t 

(((AJ)?) = At~~21K12 
n 

(A61 
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(((Au)*)) = At# 
((AJA'#)) = 0 .- 

Note here that the relation ((AJ)) = $&((AJ)2)) was verified experimentally /5/ and 
was proven in general for all Hamiltonian system with random noise /2,3/. Similarly, the 
phase averaging for the different-point moments yields the expressions: 

((AJAX)) = AtCdv,P-_,P~ 
li 

((AJAG)) = 0 

((A'PAj)) = 0 (A71 

10 


